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9.1 Itô-Wiener decomposition . . . . . . . . . . . . . . . . . . . . 188

9.1.1 Real Hermite polynomials . . . . . . . . . . . . . . . . 188
9.1.2 Chaos expansions . . . . . . . . . . . . . . . . . . . . . 190
9.1.3 The space L2(H,µ;H) . . . . . . . . . . . . . . . . . . 193

9.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.1 The space W 1,2(H,µ) . . . . . . . . . . . . . . . . . . 196
9.2.2 Some additional summability results . . . . . . . . . . 197
9.2.3 Compactness of the embedding W 1,2(H,µ) ⊂ L2(H,µ) 198
9.2.4 The space W 2,2(H,µ) . . . . . . . . . . . . . . . . . . 201

9.3 The Malliavin derivative . . . . . . . . . . . . . . . . . . . . . 203

10 Ornstein-Uhlenbeck semigroups on Lp(H,µ) 205
10.1 Extension of (Rt) to Lp(H,µ) . . . . . . . . . . . . . . . . . 206

10.1.1 The adjoint of (Rt) in L2(H,µ) . . . . . . . . . . . . . 211
10.2 The infinitesimal generator of (Rt) . . . . . . . . . . . . . . . 212

10.2.1 Characterization of the domain of L2 . . . . . . . . . . 215
10.3 The case when (Rt) is strong Feller . . . . . . . . . . . . . . . 217

10.3.1 Additional regularity properties of (Rt) . . . . . . . . 221
10.3.2 Hypercontractivity of (Rt) . . . . . . . . . . . . . . . . 224

10.4 A representation formula for (Rt) in terms of the second quan-
tization operator . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.4.1 The second quantization operator . . . . . . . . . . . . 228
10.4.2 The adjoint of (Rt) . . . . . . . . . . . . . . . . . . . . 230

10.5 Poincaré and log-Sobolev inequalities . . . . . . . . . . . . . . 230
10.5.1 The case when M = 1 and Q = I . . . . . . . . . . . . 232



viii Contents

10.5.2 A generalization . . . . . . . . . . . . . . . . . . . . . 235
10.6 Some additional regularity results when Q and A commute . 236

11 Perturbations of Ornstein-Uhlenbeck semigroups 238
11.1 Bounded perturbations . . . . . . . . . . . . . . . . . . . . . . 239
11.2 Lipschitz perturbations . . . . . . . . . . . . . . . . . . . . . . 245

11.2.1 Some additional results on the Ornstein-Uhlenbeck
semigroup . . . . . . . . . . . . . . . . . . . . . . . . . 251

11.2.2 The semigroup (Pt) in Lp(H, ν) . . . . . . . . . . . . . 256
11.2.3 The integration by parts formula . . . . . . . . . . . . 260
11.2.4 Existence of a density . . . . . . . . . . . . . . . . . . 263

12 Gradient systems 267
12.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . 268

12.1.1 Assumptions and setting of the problem . . . . . . . . 268
12.1.2 The Sobolev space W 1,2(H, ν) . . . . . . . . . . . . . . 271
12.1.3 Symmetry of the operator N0 . . . . . . . . . . . . . . 272
12.1.4 The m-dissipativity of N1 on L1(H, ν). . . . . . . . . . 274

12.2 The m-dissipativity of N2 on L2(H, ν) . . . . . . . . . . . . . 277
12.3 The case when U is convex . . . . . . . . . . . . . . . . . . . 281
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Chapter 1

Gaussian measures

This chapter is devoted to some basic results on Gaussian measures on
separable Hilbert spaces, including the Cameron-Martin and Feldman-Hajek
formulae. The greater part of the results are presented with complete proofs.

1.1 Introduction and preliminaries

We are given a real separable Hilbert space H (with norm | · | and inner
product 〈·, ·〉). The space of all linear bounded operators from H into H,
equipped with the operator norm ‖·‖, will be denoted by L(H). If T ∈ L(H),
then T ∗ is the adjoint of T. Moreover, by L+(H) we shall denote the subset
of L(H) consisting of all nonnegative symmetric operators. Finally, we shall
denote by B(H) the σ-algebra of all Borel subsets of H.
Before introducing Gaussian measures we need some results about trace

class and Hilbert-Schmidt operators.
A linear bounded operator R ∈ L(H) is said to be of trace class if there

exist two sequences (ak), (bk) in H such that

Ry =
∞∑
k=1

〈y, ak〉bk, y ∈ H, (1.1.1)

and
∞∑
k=1

|ak| |bk| < +∞. (1.1.2)

Notice that if (1.1.2) holds then the series in (1.1.1) is norm convergent.
Moreover, it is not difficult to show that R is compact.

3



4 Chapter 1

We shall denote by L1(H) the set of all operators of L(H) of trace class.
L1(H), endowed with the usual linear operations, is a Banach space with
the norm

‖R‖L1(H) = inf

{ ∞∑
k=1

|ak| |bk| : Ry =
∞∑
k=1

〈y, ak〉bk, y ∈ H, (ak), (bk) ⊂ H

}
.

We set L+
1 (H) = L+(H) ∩L1(H). If an operator R is of trace class then its

trace, Tr R, is defined by the formula

Tr R =
∞∑
j=1

〈Rej , ej〉,

where (ej) is an orthonormal and complete basis on H. Notice that, if R is
given by (1.1.1), we have

Tr R =
∞∑
j=1

〈aj , bj〉.

Thus the definition of the trace is independent on the choice of the basis
and

|Tr R| ≤ ‖R‖L1(H).

Proposition 1.1.1 Let S ∈ L1(H) and T ∈ L(H). Then

(i) ST, TS ∈ L1(H) and

‖TS‖L1(H) ≤ ‖S‖L1(H)‖T‖, ‖ST‖L1(H) ≤ ‖S‖L1(H)‖T‖.

(ii) Tr(ST ) = Tr(TS).

Proof. (i) Assume that Sy =
∞∑
k=1

〈y, ak〉bk, y ∈ H, where
∞∑
k=1

|ak||bk| < +∞.

Then

STy =
∞∑
k=1

〈y, T ∗ak〉bk, y ∈ H,

and ∞∑
k=1

|T ∗ak||bk| ≤ ‖T‖
∞∑
k=1

|ak||bk|.
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It is therefore clear that ST ∈ L1(H) and ‖ST‖L1(H) ≤ ‖S‖L1(H)‖T‖. Sim-
ilarly we can prove that ‖TS‖L1(H) ≤ ‖S‖L1(H)‖T‖.
(ii) From part (i) it follows that

Tr(ST ) =
∞∑
k=1

〈bk, T ∗ak〉 =
∞∑
k=1

〈Tbk, ak〉.

In the same way Tr (TS) =
∞∑
k=1

〈ak, T bk〉, and the conclusion follows.

We say that R ∈ L(H) is of Hilbert-Schmidt class if there exists an
orthonormal and complete basis (ek) in H such that

∞∑
k,j=1

|〈Sek, ej〉|2 < +∞. (1.1.3)

If (1.1.3) holds then we have

∞∑
k=1

|Sek|2 =
∞∑
k,j=1

|〈Sek, ej〉|2 =
∞∑
k,j=1

|〈ek, S∗ej〉|2 =
∞∑
j=1

|S∗ej |2. (1.1.4)

Now if (fk) is another complete orthonormal basis in H, we have

∞∑
m=1

|Sfm|2 =
∞∑

m,n=1

|〈Sfm, en〉|2 =
∞∑

m,n=1

|〈fm, S∗en〉|2 =
∞∑
n=1

|S∗en|2.

Thus, by (1.1.4) we see that the assertion (1.1.3) is independent of the choice
of the complete orthonormal basis (ek). We shall denote by L2(H) the space
of all Hilbert-Schmidt operators on H. L2(H), endowed with the norm

‖S‖2
L2(H) =

∞∑
k,j=1

|〈Sek, ej〉|2 =
∞∑
k=1

|Sek|2,

is a Banach space.

Proposition 1.1.2 Let S, T ∈ L2(H). Then ST ∈ L1(H) and

‖ST‖L1(H) ≤ ‖S‖L2(H)‖T‖L2(H). (1.1.5)
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Proof. Let (ek) be a complete and orthonormal basis in H, then

Ty =
∞∑
k=1

〈Ty, ek〉ek =
∞∑
k=1

〈y, T ∗ek〉ek,

STy =
∞∑
k=1

〈y, T ∗ek〉Sek.

Consequently ST ∈ L1(H) and

‖ST‖L1(H) ≤
∞∑
k=1

|T ∗ek| |Sek| ≤
( ∞∑
k=1

|T ∗ek|2
)1/2( ∞∑

k=1

|Sek|2
)1/2

= ‖T‖L2(H)‖S‖L2(H).

Therefore the conclusion follows.
Warning. If S and T are bounded operators, and ST is of trace class

then in general TS is not, as the following example, provided by S. Peszat
[183], shows.
Define two linear operators S and T on the product space H ×H, by

S =
(
0 A
B 0

)
, T =

(
I 0
0 0

)
.

Then

ST =
(
0 0
B 0

)
, TS =

(
0 A
0 0

)
,

and it is enough to take B of trace class and A not of trace class.
We have also the following result, see e.g. A. Pietsch [187].

Proposition 1.1.3 Assume that S is a compact self-adjoint operator, and
that (λk) are its eigenvalues (repeated according to their multiplicity).

(i) S ∈ L1(H) if and only if
∞∑
k=1

|λk| < +∞. Moreover ‖S‖L1(H) =
∞∑
k=1

|λk|,

and Tr S =
∞∑
k=1

λk.

(ii) S ∈ L2(H) if and only if
∞∑
k=1

|λk|2 < +∞. Moreover

‖S‖L2(H) =

( ∞∑
k=1

|λk|2
)1/2

.
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More generally let S be a compact operator on H. Denote by (λk)
the sequence of all positive eigenvalues of the operator (S∗S)1/2, repeated
according to their multiplicity. Denote by Lp(H), p > 0, the set of all
operators S such that

‖S‖Lp(H) =
( ∞∑
k=1

λpk

)1/p

< +∞. (1.1.6)

Operators belonging to L1(H) and L2(H) are precisely the trace class and
the Hilbert-Schmidt operators.
The following result holds, see N. Dunford and J. T. Schwartz [107].

Proposition 1.1.4 Let S ∈ Lp(H), T ∈ Lq(H) with p > 0, q > 0. Then
ST ∈ Lr(H) with 1

r =
1
p +

1
q , and

‖TS‖Lr(H) ≤ 21/r‖S‖Lp(H)‖T‖Lq(H). (1.1.7)

1.2 Definition and first properties of Gaussian mea-
sures

1.2.1 Measures in metric spaces

If E is a metric space, then B(E) will denote the Borel σ-algebra, that is the
smallest σ-algebra of subsets of E which contains all closed (open) subsets
of E.
Let metric spaces E1, E2 be equipped with σ-fields E1, E2 respectively.

Measurable mappings X : E1 → E2 will often be called random variables.
If µ is a measure on (E1, E1), then its image by the transformation X will
be denoted by X ◦ µ :

X ◦ µ(A) = µ(X−1(A)), A ∈ E2.

We call X ◦ µ the law or the distribution of X, and we set X ◦ µ = L(X).
If ν and µ are two finite measures on (E, E) such that Γ ∈ E , µ(Γ) = 0

implies ν(Γ) = 0 then one writes ν << µ and one says that ν is absolutely
continuous with respect to µ. If there exist A,B ∈ E such that A ∩ B = ∅,
µ(A) = ν(B) = 1, one says that µ and ν are singular.
If ν << µ then by the Radon-Nikodým theorem there exists g ∈ L1(E, E , µ)

nonnegative such that

ν(Γ) =
∫

Γ
g(x)µ(dx), Γ ∈ E .
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The function g is denoted by dνdµ .
If ν << µ and µ << ν then one says that µ and ν are equivalent and

writes µ ∼ ν.

We have the following change of variable formula. If ϕ is a nonnegative
measurable real function on E2, then∫

E1

ϕ(X(x))µ(dx) =
∫
E2

ϕ(y)X ◦ µ(dy). (1.2.1)

Let µ and ν be two measures on a separable Hilbert space H; if T ◦µ = T ◦ν
for any linear operator T : H → R

n, n ∈ N, then µ = ν.

Random variables X1, . . . , Xn are said to be independent if

L(X1, . . . , Xn) = L(X1)× · · · × L(Xn).

A family of random variables (Xα)α∈A is said to be independent, if any finite
subset of the family is independent.
Probability measures on a separable Hilbert space H will always be re-

garded as defined on B(H). If µ is a probability measure on H, then its
Fourier transform is defined by

µ̂(λ) =
∫
H

ei〈λ,x〉µ(dx), λ ∈ H;

µ̂ is called the characteristic function of µ. One can show that if the char-
acteristic functions of two measures are identical, then the measures are
identical as well.

1.2.2 Gaussian measures

We first define Gaussian measures on R. If a ∈ R we set

Na,0(dx) = δa(dx),

where δa is the Dirac measure at a. If moreover λ > 0 we set

Na,λ(dx) =
1√
2πλ

e−
(x−a)2

2λ dx.

The Fourier transform of Na,λ is given by

N̂a,λ(h) =
∫

R

eihxNa,λ(dx) = eiah−
1
2
λh2 , h ∈ R.
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More generally we show now that in an arbitrary separable Hilbert space
and for arbitrary Q ∈ L+

1 (H) there exists a unique measure Na,Q such that

N̂a,λ(h) =
∫
H

ei〈h,x〉Na,Q(dx) = ei〈h,x〉−
1
2
〈Qh,h〉, h ∈ H.

Let in fact Q ∈ L+
1 (H). Then there exist a complete orthonormal system

(ek) on H and a sequence of nonnegative numbers (λk) such that Qek =
λkek, k ∈ N. We set xh = 〈x, eh〉, h ∈ N, and Pnx =

∑n
k=1 xkek, x ∈ H, n ∈

N. Let us introduce an isomorphism γ from H into '2: (1)

x ∈ H → γ(x) = (xk) ∈ '2.

In the following we shall always identify H with '2. In particular we shall
write Pnx = (x1, ..., xn), x ∈ '2.
A subset I of H of the form I = {x ∈ H : (x1, ... , xn) ∈ B}, where

B ∈ B(Rn), is said to be cylindrical. It is easy to see that the σ-algebra
generated by all cylindrical subsets of H coincides with B(H).
Theorem 1.2.1 Let a ∈ H, Q ∈ L+

1 (H). Then there exists a unique proba-
bility measure µ on (H,B(H)) such that∫

H
ei〈h,x〉µ(dx) = ei〈a,h〉e−

1
2
〈Qh,h〉, h ∈ H. (1.2.2)

Moreover µ is the restriction to H (identified with '2) of the product measure

∞×
k=1

µk =
∞×
k=1

Nak,λk
,

defined on (R∞,B(R∞)). (2)

We set µ = Na,Q, and call a the mean and Q the covariance operator of µ.
Moreover N0,Q will be denoted by NQ.
Proof of Theorem 1.2.1. Since a characteristic function uniquely deter-
mines the measure, we have only to prove existence.
Let us consider the sequence of Gaussian measures (µk) on R defined as

µk = Nak,λk
, k ∈ N, and the product measure µ =

∞×
k=1

µk in R
∞, see e.g

1For any p ≥ 1, we denote by �p the Banach space of all sequences (xk) of real numbers
such that |x|p := (

∑∞
k=1 |xk|p)1/p < +∞.

2We shall consider R
∞ as a metric space with the distance d(x, y) :=∑∞

k=1 2
−k |xk−yk|

1+|xk−yk| , x, y ∈ R
∞
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P. R. Halmos [141, §38.B]. We want to prove that µ is concentrated on '2,
(that it is clearly a Borel subset of R

∞). For this it is enough to show that∫
�∞

|x|2�2 µ(dx) < +∞. (1.2.3)

We have in fact, by the monotone convergence theorem,∫
R∞

|x|2�2µ(dx) =
∞∑
k=1

∫
R∞

x2
k µ(dx) =

∞∑
k=1

(∫
R

(xk − ak)2µk(dx) + a2
k

)

=
∞∑
k=1

(λk + a2
k) = Tr Q+ |a|2 < +∞.

Now we consider the restriction of µ to '2, which we still denote by µ. We
have to prove that (1.2.2) holds. Setting νn =

∏n
k=1 µk, we have∫

�2
ei〈x,h〉µ(dx) = lim

n→∞

∫
�2

ei〈Pnh,Pnx〉µ(dx)

= lim
n→∞

∫
Rn

ei〈Pnh,Pnx〉νn(dx) = lim
n→∞ ei〈Pnh,Pna〉− 1

2
〈QPnh,Pnh〉

= ei〈h,a〉−
1
2
〈Qh,h〉.

If the law of a random variable is a Gaussian measure, then the random
variable is called Gaussian. It easily follows from Theorem 1.2.1 that a
random variable X with values in H is Gaussian if and only if for any
h ∈ H the real valued random variable 〈h,X〉 is Gaussian.
Remark 1.2.2 From the proof of Theorem 1.2.1 it follows that∫

H
|x|2Na,Q(dx) = Tr Q+ |a|2. (1.2.4)

Proposition 1.2.3 Let T ∈ L(H), and a ∈ H, and let Γx = Tx+a, x ∈ H.
Then Γ ◦Nm,Q = NTm+a,TQT ∗ .

Proof. Notice that, by the change of variables formula (1.2.1), we have∫
H

ei〈λ,y〉Γ ◦Nm,Q(dy) =
∫
H

ei〈λ,Γx〉Nm,Q(dy)

=
∫
H

ei〈λ,Tx+a〉Nm,Q(dy) = ei〈λ,a〉ei〈T
∗λ,m〉− 1

2
〈QT ∗λ,T ∗λ〉.

This shows the result.
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1.2.3 Computation of some Gaussian integrals

We are here given a Gaussian measure Na,Q. We set

L2(H,Na,Q) = L2(H,B(H), Na,Q).

The following identities can be easily proved, using (1.2.2).

Proposition 1.2.4 We have ∫
H

xNa,Q(dx) = a, (1.2.5)∫
H
〈x− a, y〉〈x− a, z〉Na,Q(dx) = 〈Qy, z〉. (1.2.6)∫

H
|x− a|2Na,Q(dx) = Tr Q. (1.2.7)

Proof. We prove as instance (1.2.6). We have∫
H

xNa,Q(dx) = lim
n→∞

∫
H

PnxNa,Q(dx).

But ∫
H

PnxNa,Q(dx) = (2π)−n/2
n∏
k=1

∫
R

xkλ
−1/2
k e

− (xk−ak)2

2λk dxk = ak,

and the conclusion follows.

Proposition 1.2.5 For any h ∈ H, the exponential function Eh, defined as

Eh(x) = e〈h,x〉, x ∈ H,

belongs to Lp(H,Na,Q), p ≥ 1, and∫
H

e〈h,x〉Na,Q(dx) = e〈a,h〉e
1
2
〈Qh,h〉. (1.2.8)

Moreover the subspace of L2(H,Na,Q) spanned by all Eh, h ∈ H, is dense
on L2(H,Na,Q).

Proof. We have∫
H

e〈Pnh,Pnx〉Na,Q(dx) = e〈Pna,Pnh〉e
1
2
〈QPnh,Pnh〉.
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Letting n tend to 0 this gives (1.2.8).
Let us prove the last statement. Let ϕ ∈ L2(H,Na,Q) be such that∫

H
e〈h,x〉ϕ(x)Na,Q(dx) = 0, h ∈ H.

Denote by ϕ+ and ϕ− the positive and negative parts of ϕ. Then∫
H

e〈h,x〉ϕ+(x)Na,Q(dx) =
∫
H

e〈h,x〉ϕ−(x)Na,Q(dx), h ∈ H.

Let us define two measures

µ(dx) = ϕ+(x)Na,Q(dx), ν(dx) = ϕ−(x)Na,Q(dx).

Then µ and ν are finite measures such that∫
H

e〈h,x〉µ(dx) =
∫
H

e〈h,x〉ν(dx), h ∈ H.

Let T be any linear transformation from H into R
n, n ∈ N. Then for any

λ ∈ R
n∫

Rn

e〈λ,z〉T ◦ µ(dz) =
∫
H

e〈λ,Tx〉µ(dx) =
∫
H

e〈T
∗λ,〉>µ(dx)

=
∫
H

e〈T
∗λ,x〉ν(dx) =

∫
Rn

e〈λ,z〉T ◦ ν(dz).

By a well known finite dimensional result T ◦ µ = T ◦ ν. Consequently
measures µ and ν are identical and so ϕ = 0.

1.2.4 The reproducing kernel

Here we are given an operator Q ∈ L+
1 (H). We denote as before by (ek)

a complete orthonormal system in H and by (λk) a sequence of positive
numbers such that Qek = λkek, k ∈ N.
The subspace Q1/2(H) is called the reproducing kernel of the measure

NQ. If Ker Q = {0}, Q1/2(H) is dense on H. In fact, if x0 ∈ H is such that
〈Q1/2h, x0〉 = 0 for all h ∈ H, we have Q1/2x0 = 0 and so Qx0 = 0, which
yields x0 = 0.
Let Ker Q = {0}. We are now going to introduce an isomorphism W

from H into L2(H,NQ) that will play an important rôle in the following.
The isomorphism W is defined by

f ∈ Q1/2(H)→ Wf ∈ L2(H,NQ), Wf (x) = 〈Q−1/2f, x〉, x ∈ H.
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By (1.2.7) it follows that∫
H

Wf (x)Wg(x)NQ(dx) = 〈f, g〉, f, g ∈ H.

Thus W is an isometry and it can be uniquely extended to all of H. It will
be denoted by the same symbol. For any f ∈ H, Wf is a real Gaussian
random variable N|f |2 .
More generally, for arbitrary elements f1, ..., fn, (Wf1 , ...,Wfn) is a Gaus-

sian vector with mean 0 and covariance matrix (〈fi, fj〉). If Ker Q �= {0}
then the trasformation f → Wf can be defined in exactly the same way but
only for f ∈ H0 = Q1/2(H).We will write in some cases 〈Q−1/2y, f〉 instead
of Wf (y).
The proof of the following proposition is left as an exercise to the reader.

Proposition 1.2.6 For any orthonormal sequence (fn) in H, the family

1, Wfn , WfkWfl , 2
−1/2

(
W 2
fm − 1) , m, n, k, l ∈ N, k �= l,

is orthonormal in L2(H,NQ).

Next we consider the function f → eWf .

Proposition 1.2.7 The transformation f → eWf acts continuously from H
into L2(H,NQ), and∫

H
eWf (x)NQ(dx) = e

1
2
|f |2 ,

∫
H

ei λWf (x)NQ(dx) = e−
1
2
λ2|f |2 , λ ∈ R.

(1.2.9)

Proof. Since Wf is Gaussian with law N0,|f |2 , (1.2.9) follows. Moreover,
taking into account (1.2.8) it follows that∫
H

[
eWf − eWg

]2
dNQ =

∫
H

[
e2Wf − 2eWf+g + e2Wg

]
dNQ

= e2|f |2 − 2e 1
2
|f+g|2 + e2|g|2 =

[
e|f |

2 − e|g|
2
]2
+ 2e|f |

2+|g|2
[
1− e−

1
2
|f−g|2

]
,

which shows that Wf is locally uniformly continuous on H.
Let us define the determinant of 1+S where S is a compact self-adjoint

operator in L1(H) :

det (1 + S) =
∞∏
k=1

(1 + sk),
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where (sk) is the sequence of eigenvalues of S (repeated according to their
multiplicity).

Proposition 1.2.8 Assume that M is a symmetric operator such that
Q1/2MQ1/2 < 1, (3) and let b ∈ H. Then∫

H
exp
{
1
2
〈My, y〉+ 〈b, y〉

}
NQ(dy)

=
[
det(1−Q1/2MQ1/2)

]−1/2
exp
{
1
2
|(1−Q1/2MQ1/2)−1/2Q1/2b|2

}
.

(1.2.10)

Proof. Let (gn) be an orthonormal basis for the operator Q1/2MQ1/2, and
let (γn) be the sequence of the corresponding eigenvalues.

Claim 1. We have

〈b, x〉 =
∞∑
k=1

〈Q1/2b, gn〉Wgn(x), NQ-a.e.

Claim 2. We have

〈Mx, x〉 =
∞∑
n=1

γn|Wgn(x)|2, NQ-a.e,

the series being convergent in L1(H,NQ).
We shall only prove the more difficult second claim.
Let PN =

∑N
k=1 ek ⊗ ek. (4) Then for any x ∈ H we have

〈MPNx, PNx〉 = 〈(Q1/2MQ1/2)Q−1/2PNx,Q−1/2PNx〉

=
∞∑
n=1

〈(Q1/2MQ1/2)Q−1/2PNx, gn〉〈Q−1/2PNx, gn〉

=
∞∑
n=1

γn|〈Q−1/2PNx, gn〉|2.

Consequently, for each fixed x

〈MPNx, PNx〉 =
∞∑
n=1

γn|WPNgn |2, N ∈ N.

3This means that 〈Q1/2MQ1/2x, x〉 < |x|2 for any x ∈ H different from 0.
4We rember that (ek) is the sequence of eigenvectors of Q.
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Moreover for each L ∈ N∫
H

∣∣∣∣∣〈MPNx, PNx〉 −
L∑
n=1

γn|WPNgn |2
∣∣∣∣∣NQ(dx)

≤
∞∑

n=L+1

|γn|
∫
H
|WPNgn |2NQ(dx)

=
∞∑

n=L+1

|γn| |PNgn|2 ≤
∞∑

n=L+1

|γn|.

As N → ∞ then PNx → x and WPNgn → Wgn in L2(H,NQ). Passing to
subsequences if needed, and using the Fatou lemma, we see that∫

H

∣∣∣∣∣〈Mx, x〉 −
L∑
n=1

γn|Wgn |2
∣∣∣∣∣NQ(dx) ≤

∞∑
n=L+1

|γn|.

Therefore the claim is proved.
By the claims it follows that

exp
{
1
2
〈Mx, x〉+ 〈b, x〉

}

= lim
L→∞

exp

{
L∑
n=1

1
2
γn|Wgn(x)|2 + 〈Q1/2b, gn〉Wgn(x)

}
,

with a.e. convergence with respect to NQ for a suitable subsequence. Using
the fact that (Wgn) are independent Gaussian random variables, we obtain,
by a direct calculation, for p ≥ 1,∫

H

exp

{
p

L∑
n=1

1
2
γn|Wgn(x)|2 + p〈Q1/2b, gn〉Wgn(x)

}
NQ(dx)

=

[
L∏
n=1

(1− pγn)

]−1/2

exp

{
1
2

∞∑
n=1

|〈Q1/2b, gn〉|2
1− pγn

}
.
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Since γn < 1, and
∑∞
n=1 |γn| < ∞, there exists p > 1 such that pγn < 1, for

all n ∈ N. Therefore

lim
L→∞

L∏
n=1

(1− pγn)−1/2 exp

{
1
2
|〈Q1/2b, gn〉|2
1− pγn

}

=

[ ∞∏
n=1

(1− pγn)

]−1/2

exp

{
1
2

∞∑
n=1

|〈Q1/2b, gn〉|2
1− pγn

}
.

So the sequence

(
exp

{
L∑
n=1

[
1
2
γn|Wgn(x)|2 + 〈Q1/2b, gn〉Wgn(x)

]})
is uni-

formly integrable. Consequently, passing to the limit, we find

∫
H
exp {1/2 〈My, y〉+ 〈b, y〉}NQ(dy)

= lim
L→∞

∫
H

exp

{
L∑
n=1

[
1/2 γn|Wgn(x)|2 + 〈Q1/2b, gn〉Wgn(x)

]}
NQ(dx)

= lim
L→∞

L∏
n=1

(1− γn)−1/2 exp

{
1
2
|〈Q1/2b, gn〉|2
1− γn

}

=
∞∏
n=1

(1− γn)−1/2 exp

{
1
2
|〈Q1/2b, gn〉|2
1− γn

}

=
(
det(1−Q1/2MQ1/2)

)−1/2
exp
{
1
2
|(1−Q1/2MQ1/2)−1/2Q1/2b|2

}
.

Remark 1.2.9 It follows from the proof of the proposition that

〈Mx, x〉 =
∞∑
k=1

γnW
2
gn(x) =

√
2

∞∑
k=1

γn

[
2−1/2(W 2

gn(x)− 1)
]
+

∞∑
k=1

γn,
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and so, by Proposition 1.2.6, we have

∫
H
[〈Mx, x〉]2NQ(dx) = 2

∞∑
k=1

γ2
n +

( ∞∑
k=1

γn

)2

= 2‖Q1/2MQ1/2‖2
L2(H) + (Tr Q

1/2MQ1/2)2

< +∞.

Proposition 1.2.10 Let T ∈ L1(H). Then there exists the limit

〈TQ−1/2y,Q−1/2y〉 := lim
n→∞〈TQ−1/2Pny,Q

−1/2Pny〉, NQ-a.e.,

where Pn =
∑n
k=1 ek ⊗ ek.

Moreover we have the following expansion in L2(H,NQ):

〈TQ−1/2y,Q−1/2y〉 =
∞∑
n=1

〈Tgn, gn〉+
∞∑

m	=n=1

〈Tgn, gm〉WgnWgm

×
√
2

∞∑
n=1

〈Tgn, gn〉
[
2−1/2

(
W 2
gn − 1)] . (1.2.11)

The proof of the following result is similar to that of Claim 2 in the proof
of Proposition 1.2.8 and it is left to the reader.

Proposition 1.2.11 Assume that M is a symmetric trace-class operator
such that M < 1, (5) and b ∈ H. Then∫

H
exp
{
1/2 〈MQ−1/2y,Q−1/2y〉+ 〈b,Q−1/2y〉

}
NQ(dy)

= (det(1−M))−1/2 e
1
2
|(1−M)−1/2b|2 . (1.2.12)

1.3 Absolute continuity of Gaussian measures

We consider here two Gaussian measures µ, ν.We want to prove the Feldman-
Hajek theorem , that is they are either singular or equivalent.

5That is 〈Mx, x〉 < |x|2 for all x �= 0.
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In §1.3.1 we recall some results on equivalence of measures on R
∞ in-

cluding the Kakutani theorem. In §1.3.2 we consider the case when µ = NQ
and ν = Na,Q with Q ∈ L+

1 (H) and a ∈ H, proving the Cameron-Martin
formula. Finally in §1.3.3 we consider the more difficult case when µ = NQ
and ν = NR with Q,R ∈ L+

1 (H).

1.3.1 Equivalence of product measures in R
∞

It is convenient to introduce the notion of Hellinger integral.
Let µ, ν be probability measures on a measurable space (E, E). Then

λ = 1
2(µ+ ν) is also a probability measure on (E, E) and we have obviously

µ << λ, ν << λ.

We define the Hellinger integral by

H(µ, ν) =
∫
E

[
dµ

dλ
(x)

dν

dλ
(x)
]1/2

λ(dx).

Instead of 1
2(µ+ν) one could choose as λ any measure equivalent to 1

2(µ+ν)
without changing the value of H(µ, ν).
By using Hölder’s inequality we see that

|H(µ, ν)|2 ≤
∫
E

dµ

dλ
(x)λ(dx)

∫
E

dν

dλ
(x)λ(dx) = 1,

so that 0 ≤ H(µ, ν) ≤ 1.

Exercise 1.3.1 (a) Let µ = Nq and ν = Na,q, where a ∈ R and q > 0.
Show that we have

H(µ, ν) = e
−a2

4q . (1.3.1)

(b) Let µ = Nq and ν = Nρ, where q, ρ > 0. Show that we have

H(µ, ν) =
[
4qρ
(q + ρ)2

]1/4
. (1.3.2)

Proposition 1.3.2 Assume that H(µ, ν) = 0. Then the measures µ and ν
are singular.
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Proof. Set α = dµ
dλ , β = dν

dλ . Since H(µ, ν) =
∫
Ω

√
αβ dλ = 0, we have

αβ = 0, λ-a.e. Consequently, setting

A = {ω ∈ Ω : α(ω) = 0} , B = {ω ∈ Ω : β(ω) = 0} ,

we have λ(A ∪ B) = 1. This means that λ(C) = 0 where C = Ω\(A ∪ B),
and hence µ(C) = ν(C) = 0. Then, as

µ(A) =
∫
A
α dλ = 0, ν(B) =

∫
B
β dλ = 0,

we have that µ and ν are singular since

µ(A ∪ C) = ν(B) = 0, (A ∪ C) ∩B = ∅.

Proposition 1.3.3 Let G ⊂ E be a σ-algebra, and let µG and νG be the
restrictions of µ and ν to (E,G). Then we have H(µ, ν) ≤ H(µG , νG).

Proof. Let λG be the restriction of λ to (E,G). It is easy to check that

dµG
dλG
= Eλ

(
dµ

dλ

∣∣∣G) dνG
dλG
= Eλ

(
dν

dλ

∣∣∣G) , λ-a.e.(6)

Consequently we have (7)

H(µG , νG) =
∫
E

[
Eλ

(
dµ

dλ

∣∣∣G)Eλ

(
dν

dλ

∣∣∣G)]1/2 dλ.
Since λ-a.e. [

dµ
dλ
dν
dλ

]1/2
[
Eλ

(
dµ
dλ |G

)
Eλ

(
dν
dλ |G

)]1/2 ≤ 1
2

 dµ
dλ

Eλ

(
dµ
dλ |G

) + dν
dλ

Eλ

(
dν
dλ |G

)
 ,

taking conditional expectations of both sides one finds, λ-a.e.,[
Eλ

(
dµ

dλ

∣∣∣G) Eλ

(
dν

dλ

∣∣∣G)]1/2 ≥ Eλ

((
dµ

dλ

)1/2 (dν

dλ

)1/2 ∣∣∣G) . (1.3.3)

6Eλ(η|G) is the conditional expectation of the random variable η with respect to G and
measure λ.

7For positive numbers a, b, c, d,
√

ab
cd

≤ 1
2

(
a
c
+ b

d

)
.
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Integrating with respect to λ both sides of (1.3.3), the required result follows.

Now let us consider two sequences of measures (µk) and (νk) on (R,B(R))
such that νk ∼ µk for all k ∈ N. We set λk = 1

2(µk + νk), and we consider
the Hellinger integral

H(µk, νk) =
∫

R

[
dµk
dλk
(x)

dνk
dλk
(x)
]1/2

λk(dx), k ∈ N.

Remark 1.3.4 Since (µk) and (νk) are equivalent, we have

dµk
dλk

dνk
dλk
=

dµk
dλk

dνk
dµk

dµk
dλk
=

dνk
dµk

(
dµk
dλk

)2

.

Thus

H(µk, νk) =
∫

R

[
dνk
dµk
(x)
]1/2

µk(dx). (1.3.4)

We also consider the product measures on R
∞

µ =
∞∏
k=1

µk, ν =
∞∏
k=1

νk,

and the corresponding Hellinger integral H(µ, ν). As is easily checked we
have

H(µ, ν) =
∞∏
k=1

H(µk, νk).

Proposition 1.3.5 (Kakutani) If H(µ, ν) > 0 then µ and ν are equiva-
lent. Moreover

f(x) :=
dν

dµ
(x) =

∞∏
k=1

dνk
dµk
(xk), x ∈ R

∞, µ-a.e. (1.3.5)

Proof. We set

fn(x) =
n∏
k=1

dνk
dµk
(xk), x ∈ R

∞, n ∈ N.
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We are going to prove that the sequence (fn) is convergent on
L1(R∞,B(R∞), µ). Let m,n ∈ N, then we have∫

R∞

∣∣∣f1/2
n+m(x)− f1/2

n (x)
∣∣∣2 µ(dx)

=

∫
R∞

n∏
k=1

dνk
dµk
(xk)

∣∣∣∣∣
n+m∏
k=n+1

(
dνk
dµk
(xk)

)1/2

− 1
∣∣∣∣∣
2

µ(dx)

=
n∏
k=1

∫
R∞

dνk
dµk
(xk)µ(dx)

∫
R∞

∣∣∣∣∣
n+m∏
k=n+1

(
dνk
dµk
(xk)

)1/2

− 1
∣∣∣∣∣
2

µ(dx).

Consequently∫
R∞

|f1/2
n+p(x)− f1/2

n (x)|2µ(dx)

=

∫
R∞

[
n+p∏
k=n+1

dνk
dµk
(xk)− 2

n+p∏
k=n+1

(
dνk
dµk
(xk)

)1/2

+ 1

]
µ(dx)

= 2

1− n+p∏
k=n+1

∫
R

(
dνk
dµk
(xk)

)1/2

µk(dxk)


= 2

(
1−

n+p∏
k=n+1

H(µk, νk)

)
. (1.3.6)

On the other hand we know by assumption that

H(µ, ν) =
∞∏
k=1

H(µk, νk) > 0,

or, equivalently, that

− logH(µ, ν) = −
∞∑
k=1

log[H(µk, νk)] < +∞.
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Consequently, for any ε > 0 there exists nε ∈ N such that if n > nε and
p ∈ N, we have

−
n+p∑
k=n+1

log[H(µk, νk)] < ε.

By (1.3.6) if n > nε we have∫
R∞

|√fn+p −
√

fn|2dµ ≤ 2(1− e−ε).

Thus the sequence (f1/2
n ) is convergent on L2(R∞,B(R∞), µ) to some func-

tion f1/2. Therefore fn → f in L1(R∞,B(R∞), µ).
Finally, we prove that ν << µ and f = dν

dµ . Let ϕ be a continuous
bounded Borel function on R

∞, and set ϕn(x) = ϕ(Pn(x)), x ∈ R
∞, where

Pnx = {x1, . . . , xn, 0, 0, . . . }. Then we have∫
R∞

ϕ(Pnx)ν(dx) =
∫

Rn

ϕ(Pnx) ν1(dx1) . . . νn(dxn)

=
∫

Rn

ϕ(Pnx)
dν1

dµ1
(x1) . . .

dνn
dµn
(xn) µ1(dx1) . . . µn(dxn)

=
∫

R∞
ϕ(Pnx)fn(x)µ(dx).

Letting n tend to infinity, we find∫
R∞

ϕ(x)ν(dx) =
∫

R∞
ϕ(x)f(x)µ(dx),

so that ν << µ. Finally, by exchanging the rôles of µ and ν, we find µ << ν.

1.3.2 The Cameron-Martin formula

We consider here the measures µ = Na,Q and ν = NQ, and for any a ∈
Q1/2(H) we set

ρa(x) = exp
{
−1
2
|Q−1/2a|2 + 〈Q−1/2a,Q−1/2x〉

}
, x ∈ H. (1.3.7)

Let us recall, see §1.2.4, that Wf (x) = 〈f,Q−1/2x〉 was defined for all f ∈
Q1/2(H). Since Q−1/2a ∈ Q1/2(H) the definition (1.3.7) is meaningful.




